Q.1. Find sin-1(sin(3π/5)).
Q.2. Using principle value, evaluate cos-1(cos(2π/3))+sin- 1(sin(2π/3))
Q.3. Evaluate sin-1(sin(4π/5))
Q.4. Prove that sin-1(4/5)+sin-1(5/13)+sin-1(16/65)=π/3
Q.5. Prove that Tan-1(√x)=[cos-1((1-x)/(1+x))]/2, where x€[0,1]
Q.6. Prove that 2Tan-1(1/2)+Tan-1(1/7)=Tan-1(31/17)
Q.7. Prove that Tan-1x+Tan-1[2x/(1-x2)]=Tan-1(3x-x3)/1-3x2]
Q.8. Prove that cos-1x=sin-1(1-x)/2)
Q.9. If Tan-1a+Tan-1b+Tan-1c=π, Prove that a+b+c=abc